Calculate: sum from n=1 to 6 of ((2)/(3))^{n-1}

Expression: $\sum_{ n=1 }^{ 6 } {\left( \frac{ 2 }{ 3 } \right)}^{n-1}$

Find the first term of the series, $a_1$, by substituting $1$ for $n$ in ${\left( \frac{ 2 }{ 3 } \right)}^{n-1}$, and identify the common ratio $r$

$\begin{array} { l }a_1={\left( \frac{ 2 }{ 3 } \right)}^{1-1},\\r=\frac{ 2 }{ 3 }\end{array}$

Simplify the expression

$\begin{array} { l }a_1=1,\\r=\frac{ 2 }{ 3 }\end{array}$

Write the rule for the sum of a finite geometric series, $S_n=a_1 \times \frac{ 1-{r}^{n} }{ 1-r }$, for $n=6$

$S_6=a_1 \times \frac{ 1-{r}^{6} }{ 1-r }$

Substitute $1$ for $a_1$ and $\frac{ 2 }{ 3 }$ for $r$

$S_6=1 \times \frac{ 1-{\left( \frac{ 2 }{ 3 } \right)}^{6} }{ 1-\frac{ 2 }{ 3 } }$

Simplify the expression

$\begin{align*}&S_6=\frac{ 665 }{ 243 } \\&\begin{array} { l }S_6=2 \frac{ 179 }{ 243 },& S_6\approx2.73663\end{array}\end{align*}$