Solve for: integral of (x)/(x^5) x

Expression: $\int{ \frac{ x }{ {x}^{5} } } \mathrm{d} x$

Cancel out the common factor $x$

$\int{ \frac{ 1 }{ {x}^{4} } } \mathrm{d} x$

Use $\begin{array} { l }\int{ \frac{ 1 }{ {x}^{n} } } \mathrm{d} x=-\frac{ 1 }{ \left( n-1 \right) \times {x}^{n-1} },& n≠1\end{array}$ to evaluate the integral

$-\frac{ 1 }{ 3{x}^{3} }$

Add the constant of integration $C \in ℝ$

$\begin{array} { l }-\frac{ 1 }{ 3{x}^{3} }+C,& C \in ℝ\end{array}$