$\frac{ \left( x-6 \right) \times \left( x+6 \right) }{ {x}^{2}-4x-12 } \times \frac{ x+2 }{ 9x }$
Write $-4x$ as a difference$\frac{ \left( x-6 \right) \times \left( x+6 \right) }{ {x}^{2}+2x-6x-12 } \times \frac{ x+2 }{ 9x }$
Factor out $x$ from the expression$\frac{ \left( x-6 \right) \times \left( x+6 \right) }{ x \times \left( x+2 \right)-6x-12 } \times \frac{ x+2 }{ 9x }$
Factor out $-6$ from the expression$\frac{ \left( x-6 \right) \times \left( x+6 \right) }{ x \times \left( x+2 \right)-6\left( x+2 \right) } \times \frac{ x+2 }{ 9x }$
Factor out $x+2$ from the expression$\frac{ \left( x-6 \right) \times \left( x+6 \right) }{ \left( x+2 \right) \times \left( x-6 \right) } \times \frac{ x+2 }{ 9x }$
Cancel out the common factor $x-6$$\frac{ x+6 }{ x+2 } \times \frac{ x+2 }{ 9x }$
Cancel out the common factor $x+2$$\left( x+6 \right) \times \frac{ 1 }{ 9x }$
Calculate the product$\frac{ x+6 }{ 9x }$