$\begin{array} { l }a=3,& b=-2,& c=1\end{array}$
Substitute $a=3$, $b=-2$ and $c=1$ into the quadratic formula $x=\frac{ -b\pm\sqrt{ {b}^{2}-4ac } }{ 2a }$$x=\frac{ -\left( -2 \right)\pm\sqrt{ {\left( -2 \right)}^{2}-4 \times 3 \times 1 } }{ 2 \times 3 }$
Any expression multiplied by $1$ remains the same$x=\frac{ -\left( -2 \right)\pm\sqrt{ {\left( -2 \right)}^{2}-4 \times 3 } }{ 2 \times 3 }$
When there is a $-$ in front of an expression in parentheses, change the sign of each term of the expression and remove the parentheses$x=\frac{ 2\pm\sqrt{ {\left( -2 \right)}^{2}-4 \times 3 } }{ 2 \times 3 }$
Evaluate the power$x=\frac{ 2\pm\sqrt{ 4-4 \times 3 } }{ 2 \times 3 }$
Multiply the numbers$x=\frac{ 2\pm\sqrt{ 4-12 } }{ 2 \times 3 }$
Multiply the numbers$x=\frac{ 2\pm\sqrt{ 4-12 } }{ 6 }$
Calculate the difference$x=\frac{ 2\pm\sqrt{ -8 } }{ 6 }$
The square root of a negative number does not exist in the set of real numbers$x\notin ℝ$