$=\lim _{x\to 0}(\frac{-4\sin(4x)}{\tan(2x)+2x\sec^{2}(2x)})$
Apply L'Hopital's Rule$=\lim _{x\to 0}(\frac{-16\cos(4x)}{4\sec^{2}(2x)+8x\sec^{2}(2x)\tan(2x)})$
Plug in the value $ x=0$$=\frac{-16\cos(4\cdot 0)}{4\sec^{2}(2\cdot 0)+8\cdot 0\cdot \sec^{2}(2\cdot 0)\tan(2\cdot 0)}$
Simplify $\frac{-16\cos(4\cdot 0)}{4\sec^{2}(2\cdot 0)+8\cdot 0\cdot \sec^{2}(2\cdot 0)\tan(2\cdot 0)}:{\quad}-4$$=-4$