Solve for: (x^5-x^4+1*x^3-1*x^2+7x-10)/(x-1)

Expression: $\frac{x^{5}-x^{4}+1\cdot x^{3}-1\cdot x^{2}+7x-10}{x-1}$

Expand $ x^{5}-x^{4}+1\cdot x^{3}-1\cdot x^{2}+7x-10:{\quad}x^{5}-x^{4}+x^{3}-x^{2}+7x-10$

$=\frac{x^{5}-x^{4}+x^{3}-x^{2}+7x-10}{x-1}$

Divide $ \frac{x^{5}-x^{4}+x^{3}-x^{2}+7x-10}{x-1}:{\quad}\frac{x^{5}-x^{4}+x^{3}-x^{2}+7x-10}{x-1}=x^{4}+\frac{x^{3}-x^{2}+7x-10}{x-1}$

$=x^{4}+\frac{x^{3}-x^{2}+7x-10}{x-1}$

Divide $ \frac{x^{3}-x^{2}+7x-10}{x-1}:{\quad}\frac{x^{3}-x^{2}+7x-10}{x-1}=x^{2}+\frac{7x-10}{x-1}$

$=x^{4}+x^{2}+\frac{7x-10}{x-1}$

Divide $ \frac{7x-10}{x-1}:{\quad}\frac{7x-10}{x-1}=7+\frac{-3}{x-1}$

$=x^{4}+x^{2}+7+\frac{-3}{x-1}$

Simplify

$=x^{4}+x^{2}+7-\frac{3}{x-1}$