Solve for: {\text{begin}array l-2x+3y=16 } 2x+3y=-16\text{end}array .

Expression: $\left\{\begin{array} { l } -2x+3y=16 \\ 2x+3y=-16\end{array} \right.$

Solve the equation for $3y$

$\left\{\begin{array} { l } -2x+3y=16 \\ 3y=-16-2x\end{array} \right.$

Substitute the given value of $3y$ into the equation $-2x+3y=16$

$-2x-16-2x=16$

Solve the equation for $x$

$x=-8$

Substitute the given value of $x$ into the equation $3y=-16-2x$

$3y=-16-2 \times \left( -8 \right)$

Solve the equation for $y$

$y=0$

The possible solution of the system is the ordered pair $\left( x, y\right)$

$\left( x, y\right)=\left( -8, 0\right)$

Check if the given ordered pair is the solution of the system of equations

$\left\{\begin{array} { l } -2 \times \left( -8 \right)+3 \times 0=16 \\ 2 \times \left( -8 \right)+3 \times 0=-16\end{array} \right.$

Simplify the equalities

$\left\{\begin{array} { l } 16=16 \\ -16=-16\end{array} \right.$

Since all of the equalities are true, the ordered pair is the solution of the system

$\left( x, y\right)=\left( -8, 0\right)$