$\left\{\begin{array} { l } -2x+3y=16 \\ 3y=-16-2x\end{array} \right.$
Substitute the given value of $3y$ into the equation $-2x+3y=16$$-2x-16-2x=16$
Solve the equation for $x$$x=-8$
Substitute the given value of $x$ into the equation $3y=-16-2x$$3y=-16-2 \times \left( -8 \right)$
Solve the equation for $y$$y=0$
The possible solution of the system is the ordered pair $\left( x, y\right)$$\left( x, y\right)=\left( -8, 0\right)$
Check if the given ordered pair is the solution of the system of equations$\left\{\begin{array} { l } -2 \times \left( -8 \right)+3 \times 0=16 \\ 2 \times \left( -8 \right)+3 \times 0=-16\end{array} \right.$
Simplify the equalities$\left\{\begin{array} { l } 16=16 \\ -16=-16\end{array} \right.$
Since all of the equalities are true, the ordered pair is the solution of the system$\left( x, y\right)=\left( -8, 0\right)$