$? \times {\left( 8x \right)}^{2} \times {3}^{0}+? \times {\left( 8x \right)}^{1} \times {3}^{1}+? \times {\left( 8x \right)}^{0} \times {3}^{2}$
Substitute the coefficients from row ARG1 of Pascal's triangle, ARG2, into the expression$1 \times {\left( 8x \right)}^{2} \times {3}^{0}+2 \times {\left( 8x \right)}^{1} \times {3}^{1}+1 \times {\left( 8x \right)}^{0} \times {3}^{2}$
Any expression multiplied by $1$ remains the same${\left( 8x \right)}^{2} \times {3}^{0}+2 \times {\left( 8x \right)}^{1} \times {3}^{1}+1 \times {\left( 8x \right)}^{0} \times {3}^{2}$
Any expression multiplied by $1$ remains the same${\left( 8x \right)}^{2} \times {3}^{0}+2 \times {\left( 8x \right)}^{1} \times {3}^{1}+{\left( 8x \right)}^{0} \times {3}^{2}$
To raise a product to a power, raise each factor to that power$64{x}^{2} \times {3}^{0}+2 \times {\left( 8x \right)}^{1} \times {3}^{1}+{\left( 8x \right)}^{0} \times {3}^{2}$
Any non-zero expression raised to the power of $0$ equals $1$$64{x}^{2} \times 1+2 \times {\left( 8x \right)}^{1} \times {3}^{1}+{\left( 8x \right)}^{0} \times {3}^{2}$
Any expression raised to the power of $1$ equals itself$64{x}^{2} \times 1+2 \times 8x \times {3}^{1}+{\left( 8x \right)}^{0} \times {3}^{2}$
Any expression raised to the power of $1$ equals itself$64{x}^{2} \times 1+2 \times 8x \times 3+{\left( 8x \right)}^{0} \times {3}^{2}$
Any non-zero expression raised to the power of $0$ equals $1$$64{x}^{2} \times 1+2 \times 8x \times 3+1 \times {3}^{2}$
Any expression multiplied by $1$ remains the same$64{x}^{2}+2 \times 8x \times 3+1 \times {3}^{2}$
Any expression multiplied by $1$ remains the same$64{x}^{2}+2 \times 8x \times 3+{3}^{2}$
Calculate the product$64{x}^{2}+48x+{3}^{2}$
Evaluate the power$64{x}^{2}+48x+9$