Solve for: ln(\sqrt[7]{(y+9)^{11}})

Expression: $\ln\left({\sqrt[7]{{\left( y+9 \right)}^{11}}}\right)$

Simplify the radical expression

$\ln\left({\left( y+9 \right)\sqrt[7]{{\left( y+9 \right)}^{4}}}\right)$

Use $\ln\left({x \times y}\right)=\ln\left({x}\right)+\ln\left({y}\right)$ to expand the expression

$\ln\left({y+9}\right)+\ln\left({\sqrt[7]{{\left( y+9 \right)}^{4}}}\right)$

Write the expression in exponential form with the base of $y+9$

$\ln\left({y+9}\right)+\ln\left({{\left( y+9 \right)}^{\frac{ 4 }{ 7 }}}\right)$

Use $\ln\left({{a}^{c}}\right)=c \times \ln\left({a}\right)$ to transform the expression

$\ln\left({y+9}\right)+\frac{ 4 }{ 7 } \times \ln\left({y+9}\right)$

Calculate the sum

$\frac{ 11 }{ 7 } \times \ln\left({y+9}\right)$