Calculate: /(765428) 148

Expression: $$\frac { 765428 } { 148 }$$

Use the $1^{st}$ digit $7$ from dividend $765428$

$$\begin{array}{l}\phantom{148)}\phantom{1}\\148\overline{)765428}\\\end{array}$$

Since $7$ is less than $148$, use the next digit $6$ from dividend $765428$ and add $0$ to the quotient

$$\begin{array}{l}\phantom{148)}0\phantom{2}\\148\overline{)765428}\\\end{array}$$

Use the $2^{nd}$ digit $6$ from dividend $765428$

$$\begin{array}{l}\phantom{148)}0\phantom{3}\\148\overline{)765428}\\\end{array}$$

Since $76$ is less than $148$, use the next digit $5$ from dividend $765428$ and add $0$ to the quotient

$$\begin{array}{l}\phantom{148)}00\phantom{4}\\148\overline{)765428}\\\end{array}$$

Use the $3^{rd}$ digit $5$ from dividend $765428$

$$\begin{array}{l}\phantom{148)}00\phantom{5}\\148\overline{)765428}\\\end{array}$$

Find closest multiple of $148$ to $765$. We see that $5 \times 148 = 740$ is the nearest. Now subtract $740$ from $765$ to get reminder $25$. Add $5$ to quotient.

$$\begin{array}{l}\phantom{148)}005\phantom{6}\\148\overline{)765428}\\\phantom{148)}\underline{\phantom{}740\phantom{999}}\\\phantom{148)9}25\\\end{array}$$

Use the $4^{th}$ digit $4$ from dividend $765428$

$$\begin{array}{l}\phantom{148)}005\phantom{7}\\148\overline{)765428}\\\phantom{148)}\underline{\phantom{}740\phantom{999}}\\\phantom{148)9}254\\\end{array}$$

Find closest multiple of $148$ to $254$. We see that $1 \times 148 = 148$ is the nearest. Now subtract $148$ from $254$ to get reminder $106$. Add $1$ to quotient.

$$\begin{array}{l}\phantom{148)}0051\phantom{8}\\148\overline{)765428}\\\phantom{148)}\underline{\phantom{}740\phantom{999}}\\\phantom{148)9}254\\\phantom{148)}\underline{\phantom{9}148\phantom{99}}\\\phantom{148)9}106\\\end{array}$$

Use the $5^{th}$ digit $2$ from dividend $765428$

$$\begin{array}{l}\phantom{148)}0051\phantom{9}\\148\overline{)765428}\\\phantom{148)}\underline{\phantom{}740\phantom{999}}\\\phantom{148)9}254\\\phantom{148)}\underline{\phantom{9}148\phantom{99}}\\\phantom{148)9}1062\\\end{array}$$

Find closest multiple of $148$ to $1062$. We see that $7 \times 148 = 1036$ is the nearest. Now subtract $1036$ from $1062$ to get reminder $26$. Add $7$ to quotient.

$$\begin{array}{l}\phantom{148)}00517\phantom{10}\\148\overline{)765428}\\\phantom{148)}\underline{\phantom{}740\phantom{999}}\\\phantom{148)9}254\\\phantom{148)}\underline{\phantom{9}148\phantom{99}}\\\phantom{148)9}1062\\\phantom{148)}\underline{\phantom{9}1036\phantom{9}}\\\phantom{148)999}26\\\end{array}$$

Use the $6^{th}$ digit $8$ from dividend $765428$

$$\begin{array}{l}\phantom{148)}00517\phantom{11}\\148\overline{)765428}\\\phantom{148)}\underline{\phantom{}740\phantom{999}}\\\phantom{148)9}254\\\phantom{148)}\underline{\phantom{9}148\phantom{99}}\\\phantom{148)9}1062\\\phantom{148)}\underline{\phantom{9}1036\phantom{9}}\\\phantom{148)999}268\\\end{array}$$

Find closest multiple of $148$ to $268$. We see that $1 \times 148 = 148$ is the nearest. Now subtract $148$ from $268$ to get reminder $120$. Add $1$ to quotient.

$$\begin{array}{l}\phantom{148)}005171\phantom{12}\\148\overline{)765428}\\\phantom{148)}\underline{\phantom{}740\phantom{999}}\\\phantom{148)9}254\\\phantom{148)}\underline{\phantom{9}148\phantom{99}}\\\phantom{148)9}1062\\\phantom{148)}\underline{\phantom{9}1036\phantom{9}}\\\phantom{148)999}268\\\phantom{148)}\underline{\phantom{999}148\phantom{}}\\\phantom{148)999}120\\\end{array}$$

Since $120$ is less than $148$, stop the division. The reminder is $120$. The topmost line $005171$ is the quotient. Remove all zeros at the start of the quotient to get the actual quotient $5171$.

$$\text{Quotient: }5171$$ $$\text{Reminder: }120$$