$2^{n + 3} \div 2^{6n + 1}$
Rewrite the division as a fraction$\frac{2^{n + 3}}{2^{6n + 1}}$
Factor $2^{6n + 1}$$\frac{2^{6n + 1} \cdot 2^{n + 3 - \left(6n + 1\right)}}{2^{6n + 1}}$
Multiply by $1$$\frac{2^{6n + 1} \cdot 2^{n + 3 - \left(6n + 1\right)}}{2^{6n + 1} \cdot 1}$
Cancel the common factor$\frac{2^{6n + 1} \cdot 2^{n + 3 - \left(6n + 1\right)}}{2^{6n + 1} \cdot 1}$
Rewrite the expression$\frac{2^{n + 3 - \left(6n + 1\right)}}{1}$
Divide $2^{n + 3 - \left(6n + 1\right)}$$2^{n + 3 - \left(6n + 1\right)}$
Apply the distributive property$2^{n + 3 - \left(6n\right) - 1 \cdot 1}$
Multiply $6$$2^{n + 3 - 6n - 1 \cdot 1}$
Multiply $ - 1$$2^{n + 3 - 6n - 1}$
Subtract $6n$$2^{ - 5n + 3 - 1}$
Subtract $1$$2^{ - 5n + 2}$