Solve for: 5 1/3*6 3/5*1 4/11

Expression: $5\frac{1}{3}\cdot 6\frac{3}{5}\cdot 1\frac{4}{11}$

Convert mixed numbers to improper fractions $:{\quad}5\frac{1}{3}=\frac{16}{3}$

$=\frac{16}{3}\cdot 6\frac{3}{5}\cdot 1\frac{4}{11}$

Convert mixed numbers to improper fractions $:{\quad}6\frac{3}{5}=\frac{33}{5}$

$=\frac{16}{3}\cdot \frac{33}{5}\cdot 1\frac{4}{11}$

Convert mixed numbers to improper fractions $:{\quad}1\frac{4}{11}=\frac{15}{11}$

$=\frac{16}{3}\cdot \frac{33}{5}\cdot \frac{15}{11}$

Apply the fraction rule $\frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d}$

$=\frac{16\cdot 33\cdot 15}{3\cdot 5\cdot 11}$

Factor the number: $ 33=3\cdot 11$

$=\frac{16\cdot 3\cdot 11\cdot 15}{3\cdot 5\cdot 11}$

Cancel the common factor: $ 3$

$=\frac{16\cdot 11\cdot 15}{5\cdot 11}$

Cancel the common factor: $ 11$

$=\frac{16\cdot 15}{5}$

Divide the numbers: $ \frac{15}{5}=3$

$=16\cdot 3$

Multiply the numbers: $ 16\cdot 3=48$

$=48$