Evaluate: ((40r^3-18r^2+3r-13))/((4r-3))

Expression: $\frac{(40r^{3}-18r^{2}+3r-13)}{(4r-3)}$

Divide $ \frac{40r^{3}-18r^{2}+3r-13}{4r-3}:{\quad}\frac{40r^{3}-18r^{2}+3r-13}{4r-3}=10r^{2}+\frac{12r^{2}+3r-13}{4r-3}$

$=10r^{2}+\frac{12r^{2}+3r-13}{4r-3}$

Divide $ \frac{12r^{2}+3r-13}{4r-3}:{\quad}\frac{12r^{2}+3r-13}{4r-3}=3r+\frac{12r-13}{4r-3}$

$=10r^{2}+3r+\frac{12r-13}{4r-3}$

Divide $ \frac{12r-13}{4r-3}:{\quad}\frac{12r-13}{4r-3}=3+\frac{-4}{4r-3}$

$=10r^{2}+3r+3+\frac{-4}{4r-3}$

Simplify

$=10r^{2}+3r+3-\frac{4}{4r-3}$