Calculate: c^3=5

Expression: $c^{3}=5$

For $x^{3}=f(a)$ the solutions are $x=\sqrt[3]{f(a)}, \sqrt[3]{f(a)}\frac{-1-\sqrt{3}i}{2}, \sqrt[3]{f(a)}\frac{-1+\sqrt{3}i}{2}$

$c=\sqrt[3]{5},c=\sqrt[3]{5}\frac{-1+\sqrt{3}i}{2},c=\sqrt[3]{5}\frac{-1-\sqrt{3}i}{2}$

Simplify $\sqrt[3]{5}\frac{-1+\sqrt{3}i}{2}:{\quad}-\sqrt[3]{5}\frac{1}{2}+\sqrt[3]{5}\frac{\sqrt{3}}{2}i$

$c=\sqrt[3]{5},c=-\sqrt[3]{5}\frac{1}{2}+\sqrt[3]{5}\frac{\sqrt{3}}{2}i,c=-\sqrt[3]{5}\frac{1}{2}-\sqrt[3]{5}\frac{\sqrt{3}}{2}i$