$c=\sqrt[3]{5},c=\sqrt[3]{5}\frac{-1+\sqrt{3}i}{2},c=\sqrt[3]{5}\frac{-1-\sqrt{3}i}{2}$
Simplify $\sqrt[3]{5}\frac{-1+\sqrt{3}i}{2}:{\quad}-\sqrt[3]{5}\frac{1}{2}+\sqrt[3]{5}\frac{\sqrt{3}}{2}i$$c=\sqrt[3]{5},c=-\sqrt[3]{5}\frac{1}{2}+\sqrt[3]{5}\frac{\sqrt{3}}{2}i,c=-\sqrt[3]{5}\frac{1}{2}-\sqrt[3]{5}\frac{\sqrt{3}}{2}i$