Solve for: (2x^2-41)/(11x+2)

Expression: $\frac{2x^{2}-41}{11x+2}$

Divide $ \frac{2x^{2}-41}{11x+2}:{\quad}\frac{2x^{2}-41}{11x+2}=\frac{2x}{11}+\frac{-\frac{4x}{11}-41}{11x+2}$

$=\frac{2x}{11}+\frac{-\frac{4x}{11}-41}{11x+2}$

Divide $ \frac{-\frac{4x}{11}-41}{11x+2}:{\quad}\frac{-\frac{4x}{11}-41}{11x+2}=-\frac{4}{121}+\frac{-\frac{4953}{121}}{11x+2}$

$=\frac{2x}{11}-\frac{4}{121}+\frac{-\frac{4953}{121}}{11x+2}$

Simplify

$=\frac{2x}{11}-\frac{4}{121}-\frac{4953}{121(11x+2)}$