$4{y}^{2}-3-13=0$
Calculate the difference$4{y}^{2}-16=0$
Divide both sides of the equation by $4$${y}^{2}-4=0$
Identify the coefficients $p$ and $q$ of the quadratic equation$\begin{array} { l }p=0,& q=-4\end{array}$
Substitute $p=0$ and $q=-4$ into the PQ formula $x=-\frac{ p }{ 2 }\pm\sqrt{ {\left( \frac{ p }{ 2 } \right)}^{2}-q }$$y=-\frac{ 0 }{ 2 }\pm\sqrt{ {\left( \frac{ 0 }{ 2 } \right)}^{2}-\left( -4 \right) }$
$0$ divided by any non-zero expression equals $0$$y=-0\pm\sqrt{ {\left( \frac{ 0 }{ 2 } \right)}^{2}-\left( -4 \right) }$
Simplify the expression$y=-0\pm2$
Removing $0$ doesn't change the value, so remove it from the expression$y=2$
Write the solutions, one with a $+$ sign and one with a $-$ sign$\begin{array} { l }y=2,\\y=-2\end{array}$
The equation has $2$ solutions$\begin{array} { l }y_1=-2,& y_2=2\end{array}$