$\int{ -\frac{ 1 }{ 3\left( x-2 \right) }+\frac{ 1 }{ 3\left( x-5 \right) } } \mathrm{d} x$
Use the property of integral $\int{ f\left( x \right)\pmg\left( x \right) } \mathrm{d} x=\int{ f\left( x \right) } \mathrm{d} x\pm\int{ g\left( x \right) } \mathrm{d} x$$-\int{ \frac{ 1 }{ 3\left( x-2 \right) } } \mathrm{d} x+\int{ \frac{ 1 }{ 3\left( x-5 \right) } } \mathrm{d} x$
Evaluate the indefinite integral$-\frac{ 1 }{ 3 } \times \ln\left({|x-2|}\right)+\int{ \frac{ 1 }{ 3\left( x-5 \right) } } \mathrm{d} x$
Evaluate the indefinite integral$-\frac{ 1 }{ 3 } \times \ln\left({|x-2|}\right)+\frac{ 1 }{ 3 } \times \ln\left({|x-5|}\right)$
Add the constant of integration $C \in ℝ$$\begin{array} { l }-\frac{ 1 }{ 3 } \times \ln\left({|x-2|}\right)+\frac{ 1 }{ 3 } \times \ln\left({|x-5|}\right)+C,& C \in ℝ\end{array}$