Solve for: (1)/(sqrt(3))

Expression: $\frac{ 1 }{ \sqrt{ 3 } }$

Multiply the fraction by $\frac{ \sqrt{ 3 } }{ \sqrt{ 3 } }$

$\frac{ 1 }{ \sqrt{ 3 } } \times \frac{ \sqrt{ 3 } }{ \sqrt{ 3 } }$

To multiply the fractions, multiply the numerators and denominators separately

$\frac{ 1\sqrt{ 3 } }{ \sqrt{ 3 }\sqrt{ 3 } }$

Any expression multiplied by $1$ remains the same

$\frac{ \sqrt{ 3 } }{ \sqrt{ 3 }\sqrt{ 3 } }$

When a square root of an expression is multiplied by itself, the result is that expression

$\begin{align*}&\frac{ \sqrt{ 3 } }{ 3 } \\&\approx0.57735\end{align*}$