Solve for: x=-(sqrt(7)i)/3 \approx-0-0.881917104i
x=(sqrt(7)i)/3 \approx 0.881917104i

Solve for x (complex solution): $x=-\frac{\sqrt{7}i}{3}\approx -0-0.881917104i$
$x=\frac{\sqrt{7}i}{3}\approx 0.881917104i$

Subtract $7$ from both sides. Anything subtracted from zero gives its negation.

$$9x^{2}=-7$$

Divide both sides by $9$.

$$x^{2}=-\frac{7}{9}$$

The equation is now solved.

$$x=\frac{\sqrt{7}i}{3}$$ $$x=-\frac{\sqrt{7}i}{3}$$