$\frac{ {\left( {2}^{4} \right)}^{\frac{ 3 }{ 4 }}-{8}^{\frac{ 1 }{ 3 }} }{ {2}^{2} \times 3 }$
Write the number in exponential form with the base of $2$$\frac{ {\left( {2}^{4} \right)}^{\frac{ 3 }{ 4 }}-{\left( {2}^{3} \right)}^{\frac{ 1 }{ 3 }} }{ {2}^{2} \times 3 }$
Simplify the expression by multiplying exponents$\frac{ {2}^{3}-{\left( {2}^{3} \right)}^{\frac{ 1 }{ 3 }} }{ {2}^{2} \times 3 }$
Simplify the expression by multiplying exponents$\frac{ {2}^{3}-2 }{ {2}^{2} \times 3 }$
Evaluate the power$\frac{ 8-2 }{ {2}^{2} \times 3 }$
Subtract the numbers$\frac{ 6 }{ {2}^{2} \times 3 }$
Cancel out the common factor $3$$\frac{ 2 }{ {2}^{2} }$
Cancel out the common factor $2$$\begin{align*}&\frac{ 1 }{ 2 } \\&\begin{array} { l }0.5,& {2}^{-1}\end{array}\end{align*}$