$a_1=2017-4 \times 1$
Simplify the expression$a_1=2013$
To find the next term, substitute $2$ for $n$ into $a_n=2017-4n$$a_2=2017-4 \times 2$
Simplify the expression$a_2=2009$
To find the next term, substitute $3$ for $n$ into $a_n=2017-4n$$a_3=2017-4 \times 3$
Simplify the expression$a_3=2005$
To find the next term, substitute $4$ for $n$ into $a_n=2017-4n$$a_4=2017-4 \times 4$
Simplify the expression$a_4=2001$
To find the next term, substitute $5$ for $n$ into $a_n=2017-4n$$a_5=2017-4 \times 5$
Simplify the expression$a_5=1997$
To find the next term, substitute $6$ for $n$ into $a_n=2017-4n$$a_6=2017-4 \times 6$
Simplify the expression$a_6=1993$
The first six terms of the sequence are $\begin{array} { l }2013,& 2009,& 2005,& 2001,& 1997,& 1993\end{array}$$\begin{array} { l }2013,& 2009,& 2005,& 2001,& 1997,& 1993\end{array}$