Solve for: a_{n}=2017-4n

Expression: $a_n=2017-4n$

To find the first term, substitute $1$ for $n$ into $a_n=2017-4n$

$a_1=2017-4 \times 1$

Simplify the expression

$a_1=2013$

To find the next term, substitute $2$ for $n$ into $a_n=2017-4n$

$a_2=2017-4 \times 2$

Simplify the expression

$a_2=2009$

To find the next term, substitute $3$ for $n$ into $a_n=2017-4n$

$a_3=2017-4 \times 3$

Simplify the expression

$a_3=2005$

To find the next term, substitute $4$ for $n$ into $a_n=2017-4n$

$a_4=2017-4 \times 4$

Simplify the expression

$a_4=2001$

To find the next term, substitute $5$ for $n$ into $a_n=2017-4n$

$a_5=2017-4 \times 5$

Simplify the expression

$a_5=1997$

To find the next term, substitute $6$ for $n$ into $a_n=2017-4n$

$a_6=2017-4 \times 6$

Simplify the expression

$a_6=1993$

The first six terms of the sequence are $\begin{array} { l }2013,& 2009,& 2005,& 2001,& 1997,& 1993\end{array}$

$\begin{array} { l }2013,& 2009,& 2005,& 2001,& 1997,& 1993\end{array}$