$y '=\frac{ \mathrm{d} }{ \mathrm{d}x} \left( 2{x}^{5}-5{x}^{-4}+8{x}^{2}-11x \right)$
Use differentiation rule $\frac{ \mathrm{d} }{ \mathrm{d}x} \left( f+g \right)=\frac{ \mathrm{d} }{ \mathrm{d}x} \left( f \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( g \right)$$y '=\frac{ \mathrm{d} }{ \mathrm{d}x} \left( 2{x}^{5} \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( -5{x}^{-4} \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( 8{x}^{2} \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( -11x \right)$
Find the derivative$y '=2 \times 5{x}^{4}+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( -5{x}^{-4} \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( 8{x}^{2} \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( -11x \right)$
Find the derivative$y '=2 \times 5{x}^{4}-5 \times \left( -4{x}^{-5} \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( 8{x}^{2} \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( -11x \right)$
Find the derivative$y '=2 \times 5{x}^{4}-5 \times \left( -4{x}^{-5} \right)+8 \times 2x+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( -11x \right)$
Find the derivative$y '=2 \times 5{x}^{4}-5 \times \left( -4{x}^{-5} \right)+8 \times 2x-11$
Simplify the expression$y '=10{x}^{4}+\frac{ 20 }{ {x}^{5} }+16x-11$