Calculate: \lim_{x arrow 0} (5 * (sin(3x))/(sin(5x)))

Expression: $\lim_{x \rightarrow 0} \left(5 \times \frac{ \sin\left({3x}\right) }{ \sin\left({5x}\right) }\right)$

Use $\lim_{x \rightarrow c} \left(a \times f\left( x \right)\right)=a \times \lim_{x \rightarrow c} \left(f\left( x \right)\right)$ to transform the expression

$5 \times \lim_{x \rightarrow 0} \left(\frac{ \sin\left({3x}\right) }{ \sin\left({5x}\right) }\right)$

Evaluate the limit

$5 \times \frac{ 3 }{ 5 }$

Calculate the product

$3$