Evaluate: 79 /(1) 6+91 /(2) 3-99 /(1) 4

Expression: $$79 \frac { 1 } { 6 } + 91 \frac { 2 } { 3 } - 99 \frac { 1 } { 4 }$$

Multiply $79$ and $6$ to get $474$.

$$\frac{474+1}{6}+\frac{91\times 3+2}{3}-\frac{99\times 4+1}{4}$$

Add $474$ and $1$ to get $475$.

$$\frac{475}{6}+\frac{91\times 3+2}{3}-\frac{99\times 4+1}{4}$$

Multiply $91$ and $3$ to get $273$.

$$\frac{475}{6}+\frac{273+2}{3}-\frac{99\times 4+1}{4}$$

Add $273$ and $2$ to get $275$.

$$\frac{475}{6}+\frac{275}{3}-\frac{99\times 4+1}{4}$$

Least common multiple of $6$ and $3$ is $6$. Convert $\frac{475}{6}$ and $\frac{275}{3}$ to fractions with denominator $6$.

$$\frac{475}{6}+\frac{550}{6}-\frac{99\times 4+1}{4}$$

Since $\frac{475}{6}$ and $\frac{550}{6}$ have the same denominator, add them by adding their numerators.

$$\frac{475+550}{6}-\frac{99\times 4+1}{4}$$

Add $475$ and $550$ to get $1025$.

$$\frac{1025}{6}-\frac{99\times 4+1}{4}$$

Multiply $99$ and $4$ to get $396$.

$$\frac{1025}{6}-\frac{396+1}{4}$$

Add $396$ and $1$ to get $397$.

$$\frac{1025}{6}-\frac{397}{4}$$

Least common multiple of $6$ and $4$ is $12$. Convert $\frac{1025}{6}$ and $\frac{397}{4}$ to fractions with denominator $12$.

$$\frac{2050}{12}-\frac{1191}{12}$$

Since $\frac{2050}{12}$ and $\frac{1191}{12}$ have the same denominator, subtract them by subtracting their numerators.

$$\frac{2050-1191}{12}$$

Subtract $1191$ from $2050$ to get $859$.

$$\frac{859}{12}$$