$$\frac{474+1}{6}+\frac{91\times 3+2}{3}-\frac{99\times 4+1}{4}$$
Add $474$ and $1$ to get $475$.$$\frac{475}{6}+\frac{91\times 3+2}{3}-\frac{99\times 4+1}{4}$$
Multiply $91$ and $3$ to get $273$.$$\frac{475}{6}+\frac{273+2}{3}-\frac{99\times 4+1}{4}$$
Add $273$ and $2$ to get $275$.$$\frac{475}{6}+\frac{275}{3}-\frac{99\times 4+1}{4}$$
Least common multiple of $6$ and $3$ is $6$. Convert $\frac{475}{6}$ and $\frac{275}{3}$ to fractions with denominator $6$.$$\frac{475}{6}+\frac{550}{6}-\frac{99\times 4+1}{4}$$
Since $\frac{475}{6}$ and $\frac{550}{6}$ have the same denominator, add them by adding their numerators.$$\frac{475+550}{6}-\frac{99\times 4+1}{4}$$
Add $475$ and $550$ to get $1025$.$$\frac{1025}{6}-\frac{99\times 4+1}{4}$$
Multiply $99$ and $4$ to get $396$.$$\frac{1025}{6}-\frac{396+1}{4}$$
Add $396$ and $1$ to get $397$.$$\frac{1025}{6}-\frac{397}{4}$$
Least common multiple of $6$ and $4$ is $12$. Convert $\frac{1025}{6}$ and $\frac{397}{4}$ to fractions with denominator $12$.$$\frac{2050}{12}-\frac{1191}{12}$$
Since $\frac{2050}{12}$ and $\frac{1191}{12}$ have the same denominator, subtract them by subtracting their numerators.$$\frac{2050-1191}{12}$$
Subtract $1191$ from $2050$ to get $859$.$$\frac{859}{12}$$