$\lim_{x \rightarrow 1} \left(\frac{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( {x}^{2}-\sqrt{ x } \right) }{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( \sqrt{ x }-1 \right) }\right)$
Find the derivative$\lim_{x \rightarrow 1} \left(\frac{ 2x-\frac{ 1 }{ 2\sqrt{ x } } }{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( \sqrt{ x }-1 \right) }\right)$
Find the derivative$\lim_{x \rightarrow 1} \left(\frac{ 2x-\frac{ 1 }{ 2\sqrt{ x } } }{ \frac{ 1 }{ 2\sqrt{ x } } }\right)$
Write all numerators above the common denominator$\lim_{x \rightarrow 1} \left(\frac{ \frac{ 4x\sqrt{ x }-1 }{ 2\sqrt{ x } } }{ \frac{ 1 }{ 2\sqrt{ x } } }\right)$
Simplify the expression$\lim_{x \rightarrow 1} \left(\frac{ 4x\sqrt{ x }-1 }{ 1 }\right)$
Any expression divided by $1$ remains the same$\lim_{x \rightarrow 1} \left(4x\sqrt{ x }-1\right)$
Evaluate the limit$4 \times 1\sqrt{ 1 }-1$
Simplify the expression$3$