$x=\left( 2 \times {10}^{-6} \right) \times \left( \sqrt{ 8.1 } \times {10}^{5} \right)\sqrt{ 0.0016 }$
Convert the decimal into a fraction$x=\left( 2 \times {10}^{-6} \right) \times \left( \sqrt{ \frac{ 81 }{ 10 } } \times {10}^{5} \right)\sqrt{ 0.0016 }$
Convert the decimal into a fraction$x=\left( 2 \times {10}^{-6} \right) \times \left( \sqrt{ \frac{ 81 }{ 10 } } \times {10}^{5} \right)\sqrt{ \frac{ 1 }{ 625 } }$
Remove unnecessary parentheses$x=2 \times {10}^{-6} \times \left( \sqrt{ \frac{ 81 }{ 10 } } \times {10}^{5} \right)\sqrt{ \frac{ 1 }{ 625 } }$
Remove unnecessary parentheses$x=2 \times {10}^{-6} \times \sqrt{ \frac{ 81 }{ 10 } } \times {10}^{5} \times \sqrt{ \frac{ 1 }{ 625 } }$
Evaluate the square root$x=2 \times {10}^{-6} \times \sqrt{ \frac{ 81 }{ 10 } } \times {10}^{5} \times \frac{ 1 }{ 25 }$
To take a root of a fraction, take the root of the numerator and denominator separately$x=2 \times {10}^{-6} \times \frac{ 9 }{ \sqrt{ 10 } } \times {10}^{5} \times \frac{ 1 }{ 25 }$
Calculate the product$x=\frac{ 18 \times {10}^{-1} }{ 25\sqrt{ 10 } }$
If a negative exponent is in the numerator, move the expression to the denominator and make the exponent positive$x=\frac{ 18 }{ 25\sqrt{ 10 } \times 10 }$
Cancel out the common factor $2$$x=\frac{ 9 }{ 25\sqrt{ 10 } \times 5 }$
Calculate the product$x=\frac{ 9 }{ 125\sqrt{ 10 } }$
Rationalize the denominator$\begin{align*}&x=\frac{ 9\sqrt{ 10 } }{ 1250 } \\&x\approx0.0227684\end{align*}$