$\frac{ 3 }{ \sqrt{ 6 }-\sqrt{ 5 } } \times \frac{ \sqrt{ 6 }+\sqrt{ 5 } }{ \sqrt{ 6 }+\sqrt{ 5 } }$
To multiply the fractions, multiply the numerators and denominators separately$\frac{ 3\left( \sqrt{ 6 }+\sqrt{ 5 } \right) }{ \left( \sqrt{ 6 }-\sqrt{ 5 } \right) \times \left( \sqrt{ 6 }+\sqrt{ 5 } \right) }$
Use $\left( a-b \right)\left( a+b \right)={a}^{2}-{b}^{2}$ to simplify the product$\frac{ 3\left( \sqrt{ 6 }+\sqrt{ 5 } \right) }{ 6-5 }$
Subtract the numbers$\frac{ 3\left( \sqrt{ 6 }+\sqrt{ 5 } \right) }{ 1 }$
Any expression divided by $1$ remains the same$3\left( \sqrt{ 6 }+\sqrt{ 5 } \right)$
Distribute $3$ through the parentheses$\begin{align*}&3\sqrt{ 6 }+3\sqrt{ 5 } \\&\approx14.05667\end{align*}$