Solve for: /(485) 23

Expression: $$\frac { 485 } { 23 }$$

Use the $1^{st}$ digit $4$ from dividend $485$

$$\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)485}\\\end{array}$$

Since $4$ is less than $23$, use the next digit $8$ from dividend $485$ and add $0$ to the quotient

$$\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)485}\\\end{array}$$

Use the $2^{nd}$ digit $8$ from dividend $485$

$$\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)485}\\\end{array}$$

Find closest multiple of $23$ to $48$. We see that $2 \times 23 = 46$ is the nearest. Now subtract $46$ from $48$ to get reminder $2$. Add $2$ to quotient.

$$\begin{array}{l}\phantom{23)}02\phantom{4}\\23\overline{)485}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)9}2\\\end{array}$$

Use the $3^{rd}$ digit $5$ from dividend $485$

$$\begin{array}{l}\phantom{23)}02\phantom{5}\\23\overline{)485}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)9}25\\\end{array}$$

Find closest multiple of $23$ to $25$. We see that $1 \times 23 = 23$ is the nearest. Now subtract $23$ from $25$ to get reminder $2$. Add $1$ to quotient.

$$\begin{array}{l}\phantom{23)}021\phantom{6}\\23\overline{)485}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)9}25\\\phantom{23)}\underline{\phantom{9}23\phantom{}}\\\phantom{23)99}2\\\end{array}$$

Since $2$ is less than $23$, stop the division. The reminder is $2$. The topmost line $021$ is the quotient. Remove all zeros at the start of the quotient to get the actual quotient $21$.

$$\text{Quotient: }21$$ $$\text{Reminder: }2$$