Solve for: /(x-3) 4-/(2 x-1) 5 = 5

Expression: $$\frac { x - 3 } { 4 } - \frac { 2 x - 1 } { 5 } = 5$$

Multiply both sides of the equation by $20$, the least common multiple of $4,5$.

$$5\left(x-3\right)-4\left(2x-1\right)=100$$

Use the distributive property to multiply $5$ by $x-3$.

$$5x-15-4\left(2x-1\right)=100$$

Use the distributive property to multiply $-4$ by $2x-1$.

$$5x-15-8x+4=100$$

Combine $5x$ and $-8x$ to get $-3x$.

$$-3x-15+4=100$$

Add $-15$ and $4$ to get $-11$.

$$-3x-11=100$$

Add $11$ to both sides.

$$-3x=100+11$$

Add $100$ and $11$ to get $111$.

$$-3x=111$$

Divide both sides by $-3$.

$$x=\frac{111}{-3}$$

Divide $111$ by $-3$ to get $-37$.

$$x=-37$$