Calculate: (5 * |-4+1|)/(-2+(-1))+2 * (-3)

Expression: $\frac{ 5 \times |-4+1| }{ -2+\left( -1 \right) }+2 \times \left( -3 \right)$

Calculate the sum

$\frac{ 5 \times |-3| }{ -2+\left( -1 \right) }+2 \times \left( -3 \right)$

When there is a $+$ in front of an expression in parentheses, the expression remains the same

$\frac{ 5 \times |-3| }{ -2-1 }+2 \times \left( -3 \right)$

Multiply the numbers

$\frac{ 5 \times |-3| }{ -2-1 }-6$

The absolute value of any number is always positive

$\frac{ 5 \times 3 }{ -2-1 }-6$

Calculate the difference

$\frac{ 5 \times 3 }{ -3 }-6$

Cancel out the common factor $-3$

$5 \times \left( -1 \right)-6$

Any expression multiplied by $-1$ equals its opposite

$-5-6$

Calculate the difference

$-11$