Solve for: \lim_{x arrow 0} ((x^3-1)/(x^2-1))

Expression: $a_n=7n+4$

To find the first term, substitute $1$ for $n$ into $a_n=7n+4$

$a_1=7 \times 1+4$

Simplify the expression

$a_1=11$

To find the next term, substitute $2$ for $n$ into $a_n=7n+4$

$a_2=7 \times 2+4$

Simplify the expression

$a_2=18$

To find the next term, substitute $3$ for $n$ into $a_n=7n+4$

$a_3=7 \times 3+4$

Simplify the expression

$a_3=25$

To find the next term, substitute $4$ for $n$ into $a_n=7n+4$

$a_4=7 \times 4+4$

Simplify the expression

$a_4=32$

To find the next term, substitute $5$ for $n$ into $a_n=7n+4$

$a_5=7 \times 5+4$

Simplify the expression

$a_5=39$

To find the next term, substitute $6$ for $n$ into $a_n=7n+4$

$a_6=7 \times 6+4$

Simplify the expression

$a_6=46$

The first six terms of the sequence are $\begin{array} { l }11,& 18,& 25,& 32,& 39,& 46\end{array}$

$\begin{array} { l }11,& 18,& 25,& 32,& 39,& 46\end{array}$