$-\frac{ 1 }{ 4 }p-\frac{ 7 }{ 4 }+\frac{ 5 }{ 2 } \times \left( 2p-5 \right) < 9$
Distribute $\frac{ 5 }{ 2 }$ through the parentheses$-\frac{ 1 }{ 4 }p-\frac{ 7 }{ 4 }+5p-\frac{ 25 }{ 2 } < 9$
Calculate the difference$-\frac{ 1 }{ 4 }p-\frac{ 57 }{ 4 }+5p < 9$
Multiply both sides of the inequality by $4$$-p-57+20p < 36$
Collect like terms$19p-57 < 36$
Move the constant to the right-hand side and change its sign$19p < 36+57$
Add the numbers$19p < 93$
Divide both sides of the inequality by $19$$\begin{align*}&p < \frac{ 93 }{ 19 } \\&\begin{array} { l }\begin{array} { l }\begin{array} { l }p < 4 \frac{ 17 }{ 19 },& p < 4.\overset{ \cdot }{ 8 } 9473684210526315\overset{ \cdot }{ 7 } \end{array},& p \in \langle-\infty, \frac{ 93 }{ 19 }\rangle\end{array}\end{array}\end{align*}$