$\begin{array} { l }\lim_{x \rightarrow -2^-} \left(\frac{ {x}^{2}-x-2+|x-2| }{ {x}^{2}-4 }\right),\\\lim_{x \rightarrow -2^+} \left(\frac{ {x}^{2}-x-2+|x-2| }{ {x}^{2}-4 }\right)\end{array}$
Evaluate the limit$\begin{array} { l }+\infty,\\\lim_{x \rightarrow -2^+} \left(\frac{ {x}^{2}-x-2+|x-2| }{ {x}^{2}-4 }\right)\end{array}$
Evaluate the limit$\begin{array} { l }+\infty,\\-\infty\end{array}$
Since the left-hand and the right-hand limits are different, the limit $\lim_{x \rightarrow -2} \left(\frac{ {x}^{2}-x-2+|x-2| }{ {x}^{2}-4 }\right)$ does not exist$\textnormal{Does not exist}$