$\lim_{x \rightarrow 2} \left(\frac{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( x-2 \right) }{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( \frac{ 1 }{ x }-\frac{ 1 }{ 2 } \right) }\right)$
Find the derivative$\lim_{x \rightarrow 2} \left(\frac{ 1 }{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( \frac{ 1 }{ x }-\frac{ 1 }{ 2 } \right) }\right)$
Find the derivative$\lim_{x \rightarrow 2} \left(\frac{ 1 }{ -\frac{ 1 }{ {x}^{2} } }\right)$
Use $\frac{ -a }{ b }=\frac{ a }{ -b }=-\frac{ a }{ b }$ to rewrite the fraction$\lim_{x \rightarrow 2} \left(-\frac{ 1 }{ \frac{ 1 }{ {x}^{2} } }\right)$
Simplify the complex fraction$\lim_{x \rightarrow 2} \left(-{x}^{2}\right)$
Evaluate the limit$-{2}^{2}$
Evaluate the power$-4$