$\lim_{x \rightarrow -\sqrt{ 5 }} \left(\frac{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( {x}^{2}-2\sqrt{ 5 }x-15 \right) }{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( x+\sqrt{ 5 } \right) }\right)$
Find the derivative$\lim_{x \rightarrow -\sqrt{ 5 }} \left(\frac{ 2x-2\sqrt{ 5 } }{ \frac{ \mathrm{d} }{ \mathrm{d}x} \left( x+\sqrt{ 5 } \right) }\right)$
Find the derivative$\lim_{x \rightarrow -\sqrt{ 5 }} \left(\frac{ 2x-2\sqrt{ 5 } }{ 1 }\right)$
Any expression divided by $1$ remains the same$\lim_{x \rightarrow -\sqrt{ 5 }} \left(2x-2\sqrt{ 5 }\right)$
Evaluate the limit$2 \times \left( -\sqrt{ 5 } \right)-2\sqrt{ 5 }$
Simplify the expression$\begin{align*}&-4\sqrt{ 5 } \\&\approx-8.94427\end{align*}$