Solve for: \lim_{n arrow+infinity} ((sqrt(n-1))/(sqrt(n+1)) * 1)

Expression: $\lim_{n \rightarrow +\infty} \left(\frac{ \sqrt{ n-1 } }{ \sqrt{ n+1 } } \times 1\right)$

Use $\lim_{x \rightarrow c} \left(a \times f\left( x \right)\right)=a \times \lim_{x \rightarrow c} \left(f\left( x \right)\right)$ to transform the expression

$1 \times \lim_{n \rightarrow +\infty} \left(\frac{ \sqrt{ n-1 } }{ \sqrt{ n+1 } }\right)$

Evaluate the limit

$1 \times 1$

Any expression multiplied by $1$ remains the same

$1$