$\int{ 1+2\ln\left({x}\right)+{\ln\left({x}\right)}^{2} } \mathrm{d} x$
Use the property of integral $\int{ f\left( x \right)\pmg\left( x \right) } \mathrm{d} x=\int{ f\left( x \right) } \mathrm{d} x\pm\int{ g\left( x \right) } \mathrm{d} x$$\int{ 1 } \mathrm{d} x+\int{ 2\ln\left({x}\right) } \mathrm{d} x+\int{ {\ln\left({x}\right)}^{2} } \mathrm{d} x$
Use $\int{ 1 } \mathrm{d} x=x$ to evaluate the integral$x+\int{ 2\ln\left({x}\right) } \mathrm{d} x+\int{ {\ln\left({x}\right)}^{2} } \mathrm{d} x$
Evaluate the indefinite integral$x+2x \times \ln\left({x}\right)-2x+\int{ {\ln\left({x}\right)}^{2} } \mathrm{d} x$
Evaluate the indefinite integral$x+2x \times \ln\left({x}\right)-2x+{\ln\left({x}\right)}^{2} \times x-2x \times \ln\left({x}\right)+2x$
Simplify the expression$x+{\ln\left({x}\right)}^{2} \times x$
Add the constant of integration $C \in ℝ$$\begin{array} { l }x+{\ln\left({x}\right)}^{2} \times x+C,& C \in ℝ\end{array}$