Solve for: \lim_{x arrow+infinity} ((1)/(x-12))

Expression: $\lim_{x \rightarrow +\infty} \left(\frac{ 1 }{ x-12 }\right)$

Evaluate the limits of numerator and denominator separately

$\begin{array} { l }\lim_{x \rightarrow +\infty} \left(1\right),\\\lim_{x \rightarrow +\infty} \left(x-12\right)\end{array}$

Evaluate the limit

$\begin{array} { l }1,\\\lim_{x \rightarrow +\infty} \left(x-12\right)\end{array}$

Evaluate the limit

$\begin{array} { l }1,\\+\infty\end{array}$

Since the expression $\begin{array} { l }\frac{ a }{ \infty },& a \in ℝ\end{array}$ is defined as $0$, the limit $\lim_{x \rightarrow +\infty} \left(\frac{ 1 }{ x-12 }\right)$ equals $0$

$0$