Solve for: 3/(\sqrt[4]{8)}

Expression: $\frac{3}{\sqrt[4]{8}}$

Multiply by the conjugate $ \frac{8^{\frac{3}{4}}}{8^{\frac{3}{4}}}$

$=\frac{3\cdot 8^{\frac{3}{4}}}{\sqrt[4]{8}\cdot 8^{\frac{3}{4}}}$

$\sqrt[4]{8}\cdot 8^{\frac{3}{4}}=8$

$=\frac{3\cdot 8^{\frac{3}{4}}}{8}$

Cancel $\frac{3\cdot 2^{\frac{9}{4}}}{2^{3}}:{\quad}\frac{3\sqrt[4]{2}}{2}$

$=\frac{3\sqrt[4]{2}}{2}$