$\frac{ 1 }{ {12}^{\frac{ 2 }{ 3 }} }$
Use ${a}^{\frac{ m }{ n }}=\sqrt[n]{{a}^{m}}$ to transform the expression$\frac{ 1 }{ \sqrt[3]{{12}^{2}} }$
Multiply the fraction by $\frac{ \sqrt[3]{12} }{ \sqrt[3]{12} }$$\frac{ 1 }{ \sqrt[3]{{12}^{2}} } \times \frac{ \sqrt[3]{12} }{ \sqrt[3]{12} }$
To multiply the fractions, multiply the numerators and denominators separately$\frac{ 1\sqrt[3]{12} }{ \sqrt[3]{{12}^{2}}\sqrt[3]{12} }$
Any expression multiplied by $1$ remains the same$\frac{ \sqrt[3]{12} }{ \sqrt[3]{{12}^{2}}\sqrt[3]{12} }$
The product of roots with the same index is equal to the root of the product$\frac{ \sqrt[3]{12} }{ \sqrt[3]{{12}^{2} \times 12} }$
Calculate the product$\frac{ \sqrt[3]{12} }{ \sqrt[3]{{12}^{3}} }$
Reduce the index of the radical and exponent with $3$$\begin{align*}&\frac{ \sqrt[3]{12} }{ 12 } \\&\approx0.190786\end{align*}$