Solve for: -6(t^2+3)-2(t^2-2)

Expression: $-6(t^{2}+3)-2(t^{2}-2)$

Expand $-6(t^{2}+3):{\quad}-6t^{2}-18$

$=-6t^{2}-18-2(t^{2}-2)$

Expand $-2(t^{2}-2):{\quad}-2t^{2}+4$

$=-6t^{2}-18-2t^{2}+4$

Group like terms

$=-6t^{2}-2t^{2}-18+4$

Add similar elements: $ -6t^{2}-2t^{2}=-8t^{2}$

$=-8t^{2}-18+4$

Add the numbers: $ -18+4=-14$

$=-8t^{2}-14$