$\begin{array} { l }a=1,& b=-5,& c=6\end{array}$
Substitute $a=1$, $b=-5$ and $c=6$ into the quadratic formula $x=\frac{ -b\pm\sqrt{ {b}^{2}-4ac } }{ 2a }$$x=\frac{ -\left( -5 \right)\pm\sqrt{ {\left( -5 \right)}^{2}-4 \times 1 \times 6 } }{ 2 \times 1 }$
Any expression multiplied by $1$ remains the same$x=\frac{ -\left( -5 \right)\pm\sqrt{ {\left( -5 \right)}^{2}-4 \times 6 } }{ 2 \times 1 }$
Any expression multiplied by $1$ remains the same$x=\frac{ -\left( -5 \right)\pm\sqrt{ {\left( -5 \right)}^{2}-4 \times 6 } }{ 2 }$
When there is a $-$ in front of an expression in parentheses, change the sign of each term of the expression and remove the parentheses$x=\frac{ 5\pm\sqrt{ {\left( -5 \right)}^{2}-4 \times 6 } }{ 2 }$
Evaluate the power$x=\frac{ 5\pm\sqrt{ 25-4 \times 6 } }{ 2 }$
Multiply the numbers$x=\frac{ 5\pm\sqrt{ 25-24 } }{ 2 }$
Subtract the numbers$x=\frac{ 5\pm\sqrt{ 1 } }{ 2 }$
Any root of $1$ equals $1$$x=\frac{ 5\pm1 }{ 2 }$
Write the solutions, one with a $+$ sign and one with a $-$ sign$\begin{array} { l }x=\frac{ 5+1 }{ 2 },\\x=\frac{ 5-1 }{ 2 }\end{array}$
Simplify the expression$\begin{array} { l }x=3,\\x=\frac{ 5-1 }{ 2 }\end{array}$
Simplify the expression$\begin{array} { l }x=3,\\x=2\end{array}$
The equation has $2$ solutions$\begin{array} { l }x_1=2,& x_2=3\end{array}$