Calculate: (16w^5y^{11}+28w^2y^5-36w^3y^3)/(4w^3y^3)

Expression: $\frac{ 16{w}^{5}{y}^{11}+28{w}^{2}{y}^{5}-36{w}^{3}{y}^{3} }{ 4{w}^{3}{y}^{3} }$

Factor out $4{w}^{2}{y}^{3}$ from the expression

$\frac{ 4{w}^{2}{y}^{3} \times \left( 4{w}^{3}{y}^{8}+7{y}^{2}-9w \right) }{ 4{w}^{3}{y}^{3} }$

Cancel out the common factor $4$

$\frac{ {w}^{2}{y}^{3} \times \left( 4{w}^{3}{y}^{8}+7{y}^{2}-9w \right) }{ {w}^{3}{y}^{3} }$

Cancel out the common factor ${y}^{3}$

$\frac{ {w}^{2} \times \left( 4{w}^{3}{y}^{8}+7{y}^{2}-9w \right) }{ {w}^{3} }$

Simplify the expression

$\frac{ 4{w}^{3}{y}^{8}+7{y}^{2}-9w }{ w }$