Evaluate: (2pqr^3)/(-12 * (qr)^2)

Expression: $\frac{ 2pq{r}^{3} }{ -12 \times {\left( qr \right)}^{2} }$

Cancel out the common factor $2$

$\frac{ pq{r}^{3} }{ -6 \times {\left( qr \right)}^{2} }$

To raise a product to a power, raise each factor to that power

$\frac{ pq{r}^{3} }{ -6{q}^{2}{r}^{2} }$

Simplify the expression

$\frac{ pqr }{ -6{q}^{2} }$

Cancel out the common factor $q$

$\frac{ pr }{ -6q }$

Use $\frac{ -a }{ b }=\frac{ a }{ -b }=-\frac{ a }{ b }$ to rewrite the fraction

$-\frac{ pr }{ 6q }$