Evaluate: (2)/(3)a^{-2}b^{-1} * (-18)a^{-3}b^1

Expression: $\frac{ 2 }{ 3 }{a}^{-2}{b}^{-1} \times \left( -18 \right){a}^{-3}{b}^{1}$

Any expression raised to the power of $1$ equals itself

$\frac{ 2 }{ 3 }{a}^{-2}{b}^{-1} \times \left( -18 \right){a}^{-3}b$

Multiplying an odd number of negative terms makes the product negative

$-\frac{ 2 }{ 3 }{a}^{-2}{b}^{-1} \times 18{a}^{-3}b$

Cancel out the greatest common factor $3$

$-2{a}^{-2}{b}^{-1} \times 6{a}^{-3}b$

Calculate the product

$-12{a}^{-5}$

Express with a positive exponent using ${a}^{-n}=\frac{ 1 }{ {a}^{n} }$

$-12 \times \frac{ 1 }{ {a}^{5} }$

Calculate the product

$-\frac{ 12 }{ {a}^{5} }$