Evaluate: (9x^5y^{-3}z^7) * (x^0y^4z)

Expression: $\left( 9{x}^{5}{y}^{-3}{z}^{7} \right) \times \left( {x}^{0}{y}^{4}z \right)$

Remove unnecessary parentheses

$9{x}^{5}{y}^{-3}{z}^{7} \times \left( {x}^{0}{y}^{4}z \right)$

Any non-zero expression raised to the power of $0$ equals $1$

$9{x}^{5}{y}^{-3}{z}^{7} \times \left( 1{y}^{4}z \right)$

Any expression multiplied by $1$ remains the same

$9{x}^{5}{y}^{-3}{z}^{7} \times \left( {y}^{4}z \right)$

Remove unnecessary parentheses

$9{x}^{5}{y}^{-3}{z}^{7}{y}^{4}z$

Calculate the product

$9{x}^{5}y{z}^{8}$