Evaluate: 1 (2)/(5)-4 (1)/(2)/(-2)-(4)/(5)

Expression: $1 \frac{ 2 }{ 5 }-4 \frac{ 1 }{ 2 }\div\left( -2 \right)-\frac{ 4 }{ 5 }$

Convert the mixed number to an improper fraction

$\frac{ 7 }{ 5 }-4 \frac{ 1 }{ 2 }\div\left( -2 \right)-\frac{ 4 }{ 5 }$

Convert the mixed number to an improper fraction

$\frac{ 7 }{ 5 }-\frac{ 9 }{ 2 }\div\left( -2 \right)-\frac{ 4 }{ 5 }$

Dividing two negatives equals a positive: $\left( - \right)\div\left( - \right)=\left( + \right)$

$\frac{ 7 }{ 5 }+\frac{ 9 }{ 2 }\div2-\frac{ 4 }{ 5 }$

Dividing is equivalent to multiplying by the reciprocal

$\frac{ 7 }{ 5 }+\frac{ 9 }{ 2 } \times \frac{ 1 }{ 2 }-\frac{ 4 }{ 5 }$

Multiply the fractions

$\frac{ 7 }{ 5 }+\frac{ 9 }{ 4 }-\frac{ 4 }{ 5 }$

Calculate the sum or difference

$\begin{align*}&\frac{ 57 }{ 20 } \\&\begin{array} { l }2 \frac{ 17 }{ 20 },& 2.85\end{array}\end{align*}$