Evaluate: -16-(12)/(5)y <=-6

Expression: $-16-\frac{ 12 }{ 5 }y \leq -6$

Multiply both sides of the inequality by $5$

$-80-12y \leq -30$

Move the constant to the right-hand side and change its sign

$-12y \leq -30+80$

Calculate the sum

$-12y \leq 50$

Divide both sides of the inequality by $-12$ and flip the inequality sign

$\begin{align*}&y \geq -\frac{ 25 }{ 6 } \\&\begin{array} { l }\begin{array} { l }\begin{array} { l }y \geq -4 \frac{ 1 }{ 6 },& y \geq -4.1\overset{ \cdot }{ 6 } \end{array},& y \in \left[ -\frac{ 25 }{ 6 }, +\infty\right\rangle\end{array}\end{array}\end{align*}$