Solve for: (4 /(1) 3) (-2) (/(5) 13)

Expression: $$( 4 \frac { 1 } { 3 } ) ( - 2 ) ( \frac { 5 } { 13 } )$$

Multiply $4$ and $3$ to get $12$.

$$\frac{12+1}{3}\left(-2\right)\times \left(\frac{5}{13}\right)$$

Add $12$ and $1$ to get $13$.

$$\frac{13}{3}\left(-2\right)\times \left(\frac{5}{13}\right)$$

Express $\frac{13}{3}\left(-2\right)$ as a single fraction.

$$\frac{13\left(-2\right)}{3}\times \left(\frac{5}{13}\right)$$

Multiply $13$ and $-2$ to get $-26$.

$$\frac{-26}{3}\times \left(\frac{5}{13}\right)$$

Fraction $\frac{-26}{3}$ can be rewritten as $-\frac{26}{3}$ by extracting the negative sign.

$$-\frac{26}{3}\times \left(\frac{5}{13}\right)$$

Multiply $-\frac{26}{3}$ times $\frac{5}{13}$ by multiplying numerator times numerator and denominator times denominator.

$$\frac{-26\times 5}{3\times 13}$$

Do the multiplications in the fraction $\frac{-26\times 5}{3\times 13}$.

$$\frac{-130}{39}$$

Reduce the fraction $\frac{-130}{39}$ to lowest terms by extracting and canceling out $13$.

$$-\frac{10}{3}$$