$$\frac{12+1}{3}\left(-2\right)\times \left(\frac{5}{13}\right)$$
Add $12$ and $1$ to get $13$.$$\frac{13}{3}\left(-2\right)\times \left(\frac{5}{13}\right)$$
Express $\frac{13}{3}\left(-2\right)$ as a single fraction.$$\frac{13\left(-2\right)}{3}\times \left(\frac{5}{13}\right)$$
Multiply $13$ and $-2$ to get $-26$.$$\frac{-26}{3}\times \left(\frac{5}{13}\right)$$
Fraction $\frac{-26}{3}$ can be rewritten as $-\frac{26}{3}$ by extracting the negative sign.$$-\frac{26}{3}\times \left(\frac{5}{13}\right)$$
Multiply $-\frac{26}{3}$ times $\frac{5}{13}$ by multiplying numerator times numerator and denominator times denominator.$$\frac{-26\times 5}{3\times 13}$$
Do the multiplications in the fraction $\frac{-26\times 5}{3\times 13}$.$$\frac{-130}{39}$$
Reduce the fraction $\frac{-130}{39}$ to lowest terms by extracting and canceling out $13$.$$-\frac{10}{3}$$