Calculate: (10u^{-1}v^0)/(8u^{-4)v^3 \times 5v^2}

Expression: $\frac{ 10{u}^{-1}{v}^{0} }{ 8{u}^{-4}{v}^{3} \times 5{v}^{2} }$

Any non-zero expression raised to the power of $0$ equals $1$

$\frac{ 10{u}^{-1} \times 1 }{ 8{u}^{-4}{v}^{3} \times 5{v}^{2} }$

Cancel out the common factor $5$

$\frac{ 2{u}^{-1} \times 1 }{ 8{u}^{-4}{v}^{3} \times {v}^{2} }$

Simplify the expression

$\frac{ 2{u}^{3} \times 1 }{ 8{v}^{3} \times {v}^{2} }$

Any expression multiplied by $1$ remains the same

$\frac{ 2{u}^{3} }{ 8{v}^{3} \times {v}^{2} }$

Cancel out the common factor $2$

$\frac{ {u}^{3} }{ 4{v}^{3} \times {v}^{2} }$

Calculate the product

$\frac{ {u}^{3} }{ 4{v}^{5} }$